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Abstract
A multiblock Navier-Stokes analysis code for tur-

bomachinery has been modified to allow analysis of
multistage turbomachines. A steady averaging-plane
approach was used to pass information between blade
rows. Characteristic boundary conditions written in
terms of perturbations about the mean flow from the
neighboring blade row were used to allow close spacing
between the blade rows without forcing the flow to be
axisymmetric. In this report the multiblock code is
described briefly and the characteristic boundary condi-
tions and the averaging-plane implementation are
described in detail. Two approaches for averaging the
flow properties are also described. A two-dimensional
turbine stator case was used to compare the characteris-
tic boundary conditions with standard axisymmetric
boundary conditions. Differences were apparent but
small in this low-speed case. The two-stage fuel turbine
used on the space shuttle main engines was then ana-
lyzed using a three-dimensional averaging-plane
approach. Computed surface pressure distributions on
the stator blades and endwalls and computed distribu-
tions of blade surface heat transfer coefficient on three
blades showed very good agreement with experimental

data from two tests.

Introduction
Computational methods for analyzing steady flows

in isolated turbomachinery blade rows are now highly
developed and commonly used for turbomachinery
design. Except for some fans and pumps, however, few
turbomachines operate as isolated blade rows. Most tur-
bomachines include at least a stator to add or remove

swirl, and often include many stages to do more work
than could be accomplished with a single blade row.

Several methods exist for analyzing flows in multi-
stage turbomachinery. They include the following: 1.
successive analysis of isolated blade rows, 2. averaging-
plane methods, 3. the average-passage method, and 4.
full unsteady methods. Each method has advantages but
also introduces modeling issues, as discussed below.

Successive Analysis of Isolated Blade Rows
Given an analysis code for an isolated blade row, it

is tempting to simulate multistage turbomachinery by
analyzing successive blade rows from inlet to exit, using
average flow properties from the exit of one blade row
as inlet boundary conditions for the next. This method is
simple, but it introduces many modeling issues. First,
since blade rows are often closely spaced, it is unclear
how far to extend the computational grid for each blade
row, and whether it is reasonable to overlap grids. Sec-
ond, many numerical boundary conditions are not well-
behaved when applied too close to a blade. Third, aver-
age flow properties are not well-defined [1]. Since flow
properties are related nonlinearly, it is impossible to
define an average state that maintains all the original
properties of the three-dimensional flow. Fourth, for
subsonic flow, the inlet velocity profile and massflow
develop as part of the solution. Although it may be pos-
sible to match the overall massflow by iterating on the
imposed back pressure, it is generally not possible to
match the spanwise distributions of properties between
the blade rows. Finally, the method ignores physical
processes such as wake mixing and migration, acoustic
interaction, and other unsteady effects that may be
important in real turbomachinery.

Many researchers have used successive analysis of
isolated blade rows to model multistage turbomachines.
Boyle and Giel used this method to analyze the fuel tur-
bine of the space shuttle main engine (SSME) [2]. This
turbine was also analyzed in the present work.

Averaging-Plane Methods
Averaging-plane methods solve all blade rows

simultaneously, exchanging spanwise distributions of
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averaged flow quantities at a common grid interface
between the blade rows. These methods have the advan-
tage of maintaining spanwise consistency between blade
rows, but share the modeling issues of boundary condi-
tion implementation, averaging techniques, and missing
physics with the successive analysis method. Since aver-
aging-plane methods often use mixed-out averages, they
are commonly referred to as mixing-plane methods. The
current work is independent of the averaging technique,
so the term averaging-plane will be used.

Averaging-plane methods were introduced simulta-
neously by Denton [3] and Dawes [4], and have been
used by many other researchers [5 - 9]. In spite of the
possibility of missing physics in these analyses, many
have shown excellent agreement with experimental data.

Average-Passage Method
The average-passage method was developed by

Adamczyk, et. al [10 - 12] as a rigorous means of mod-
eling unsteady blade row interaction using a steady anal-
ysis. The method splits the flow quantities into a steady
component, an unsteady deterministic (periodic) com-
ponent, and an unsteady random (turbulent) component.
The flow equations are integrated in time using proce-
dures analogous to Reynolds averaging to produce the
average-passage equations. The integration process pro-
duces the usual Reynolds stress terms, as well as corre-
lations for deterministic stress terms that must be
modeled. The average-passage method has the advan-
tage of a rigorous foundation for modeling unsteady
blade-row interaction, although little data is available
for modeling the deterministic stresses. The method
requires that the computational grids for each blade
overlap at least one neighboring blade row on each side,
adding to programming complexity and computational
overhead.

The average-passage method has been used for
numerous applications by Adamczyk, et. al [10 - 12],
and by Rhie et al. [13] and LaJambre et al. [14] for tur-
bine design, but because of its complexity it has not
been widely used by others. Recently Hall has described
an algebraic method for adding some of the average-
passage terms to an averaging-plane analysis [6, 7].

Full Unsteady Methods
Full unsteady methods, pioneered by Rai [15],

involve direct solution of unsteady rotor-stator interac-
tion. These methods presumably avoid all modeling
questions except for turbulence, and are often used to
validate other steady models [1, 6, 9, 16]. Since turbo-
machine blade rows usually have different numbers of
blades in each row to avoid resonances, full unsteady
methods often modify the blade spacing to produce

small integral blade ratios. Full unsteady methods are
very expensive computationally, and still require averag-
ing at the end to produce useful results.

Boundary Conditions
For each of the analysis methods mentioned above,

boundary conditions must be specified at the inlet and
exit of the computational domain. In addition, for aver-
aging-plane methods, average flow properties must be
transferred between the blade rows at grid interfaces. It
is common practice to force the flow to be axisymmetric
at these boundaries. Although axisymmetric boundary
conditions are simple to apply and tend to be numeri-
cally robust, they can reflect outgoing waves and
thereby hinder convergence and contaminate the interior
solution. Axisymmetric boundary conditions can be par-
ticularly bad at the inlet of transonic compressors, at the
exit of transonic turbines, and between closely-spaced
blade rows.

In [17] Giles presented a unified theory for the con-
struction of non-reflecting boundary conditions for the
Euler equations. The boundary conditions are based on
the linearized Euler equations written in terms of pertur-
bations of primitive variables about some mean flow.
Wave-like solutions are substituted into the flow equa-
tions, and the solution is circumferentially decomposed
into Fourier modes. The zeroth mode corresponds to the
mean flow and is treated according to one-dimensional
characteristic theory. This allows average changes in
incoming characteristic variables to be specified at the
boundaries. Reference [17] also describes higher-order
two-dimensional boundary conditions, but these were
not used in the present work.

Giles demonstrated that his boundary conditions
allowed inlet and exit boundaries to be placed very close
to turbine blades with no loss of accuracy [17]. Saxer
and Giles applied these boundary conditions to an invis-
cid, three-dimensional solution for a transonic turbine
stage [9]. They demonstrated good agreement in blade
pressures between a full unsteady solution and an aver-
aging-plane solution. Arnone applied Giles’ boundary
conditions to a quasi-three-dimensional viscous simula-
tion of a transonic compressor stage [16]. He compared
a full unsteady solution with an averaging-plane solu-
tion and showed close agreement in predicted pressure
ratios and efficiencies between the two.

Present Work
In the present work an improved averaging-plane

method for three-dimensional viscous flows in turboma-
chinery was developed. The averaging-plane method
gives steady solutions of multistage turbomachinery
with consistent spanwise profiles between the blade
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rows, but ignores unsteady effects that may be important
in real turbomachines. The analysis was based on the
SWIFT multi-block code developed by the author [18],
which is described here briefly.

Giles’ characteristic boundary were used at the
averaging planes. The boundary conditions were written
in terms of perturbations about the average flow from
the neighboring blade row, providing a rational way of
coupling the solutions. They allow close spacing
between blade rows without forcing the flow to be axi-
symmetric. The boundary conditions and averaging
techniques are described in detail.

Computations were made of the two-stage fuel tur-
bine from the space shuttle main engine. A computa-
tional grid with seven blocks and about 1.09 million grid
points was used. Comparisons were made with experi-
mental pressure distributions on the stators and end-
walls, and with experimental heat transfer distributions
on three of the blades.

SWIFT Code
The SWIFT turbomachinery analysis code is a

multiblock version of the single-block RVC3D code
described in [19] and [20]. The SWIFT code solves the
Navier-Stokes equations on body-fitted grids using an
explicit finite-difference scheme. It includes viscous
terms in the blade-to-blade and hub-to-tip directions, but
neglects them in the streamwise direction using the thin-
layer approximation. The Baldwin-Lomax and Cebeci-
Smith turbulence models [21] are available. The code
has limited multiblock capability intended solely for tur-
bomachinery problems. Only C-grids for blades, O-
grids for hub and tip clearances, H-grids for inlets, and
patched C-grids for multistage calculations are currently
supported.

An explicit, four-stage Runge-Kutta scheme [22]
was used to solve the flow equations. Conservative
fourth-difference artificial dissipation terms were added
to control point decoupling. (Second-difference terms
were not needed for the subsonic flow considered here.)
Eigenvalue scaling [23] was used to scale the artificial
dissipation directionally on the highly stretched grids.
The artificial dissipation was also reduced linearly with
grid index near solid surfaces (typically by a factor of
0.05 at the wall) to minimize effects on wall heat trans-
fer. Artificial and physical dissipation terms were com-
puted at the first and second stages to improve numerical
smoothing properties. The Cebeci-Smith turbulence
model was used, with all boundary layers assumed to be
fully turbulent.

To accelerate convergence to a steady state, the cal-
culations were run at a Courant number of 5.6 using a
spatially-varying time step and implicit residual smooth-
ing. Eigenvalue scaling was used to minimize the
implicit smoothing coefficients at each point in each
direction. Preconditioning [24] was also used to
improve the convergence rate, since most of the flow in
the problem considered here was at relatively low Mach
numbers (0.15 to 0.45.)

Characteristic Boundary Conditions
The general form of the non-reflecting one-dimen-

sional unsteady boundary conditions developed by Giles
[17] was used here. The boundary conditions were
developed in Cartesian coordinates, but can be applied
immediately to cylindrical coordinates if the source
term in the radial momentum equation is ignored. The
boundary conditions use the following characteristic
variables:

(1)

Equation (1) can be inverted to give:

(2)

In equations (1) and (2) Ci are characteristic vari-
ables corresponding to an entropy wave, a downstream-
running pressure wave, two vorticity waves, and an
upstream-running pressure wave. Here also ρ is the den-
sity, p is the pressure, c is the speed of sound, and vx, vθ,
and vr are velocity components. Overbars refer to aver-
age conditions to be defined later, and the coefficient
matrices are evaluated at those average conditions.

Inlet Boundary Condition
For subsonic flow at an inlet boundary, the four

incoming characteristics and the out-

going characteristic C5 is extrapolated from the interior.
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Substituting and into

equation (2) gives:

(3)

where the subscript implies extrapolation from the

interior. Equations (3) show that at the inlet ρ, vx, and p

are modified by the upstream-running characteristic ,

while and convect downstream. A solution of the

θ-momentum equation is that is constant along

streamlines, and it may be desirable to modify the
boundary conditions to give this result. For supersonic
inflow and all boundary variables are equal to

their specified average values.

Exit Boundary Condition
For subsonic flow at an exit boundary the incoming

characteristic and four outgoing characteristics

are extrapolated from the interior. Substi-

tuting values for Ci into equation (2) gives:

(4)

For subsonic outflow and ρ, vx, and p are modi-

fied by the downstream-running characteristics
while and convect downstream. For

supersonic outflow , and equations (4) reduce

algebraically to extrapolation of all primitive variables
downstream.

A particularly simple exit boundary condition can
be devised by extrapolating four primitive variables

to the exit (conservation variables based on

Cartesian velocity components work equally well).

Then substituting and

 into the last equation in (4) gives:

(5)

Equation (5) works well for inviscid flows, including
cases with oblique shocks crossing the exit boundary. It
was used for the three-dimensional multistage turbine
results shown later. After those results were computed it
was discovered that equation (5) gives small pressure
perturbations proportional to velocity perturba-

tions wherever viscous wakes cross the exit

boundary. To reduce these pressure perturbations, equa-
tion (5) can be modified by replacing the convective

speed  with , i.e.,

(6)

Two-dimensional computations using equations (5)
and (6) are compared later. For three-dimensional turbo-
machinery calculations equations (5) or (6) can be
solved at each spanwise location, with found by solv-
ing an average radial equilibrium equation.

Interface Boundary Condition
For the node-centered finite-difference scheme used

in the SWIFT code, computational grids were over-
lapped by one cell at the interface between two blade
rows. This is shown schematically in figure 1 where the
two grids have been displaced vertically for clarity.
After updating the interior solution on a grid, the solu-
tion next to the boundary was integrated circumferen-
tially at each spanwise location as described below. The
average flow vector was then stored for use in the
boundary conditions on the neighboring grid. On the
neighboring grid the average Mach number was checked
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Figure 1 − Implementation of characteristic bound-
ary condition at a blade row interface
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to determine whether the flow was supersonic, and the
characteristic boundary conditions (3) or (4) were
applied as appropriate. For general (non-axial) turboma-
chinery problems, (3) and (4) can be modified by replac-
ing the cylindrical velocity components and with

rotated components and , evaluated along stream-

wise and spanwise grid lines

Although this interface boundary condition does
not guarantee conservation between blade rows, experi-
ence has shown that it conserves mass and energy
between blade rows about as well as the finite difference
scheme conserves these properties through the blade
rows. Furthermore, the degree of conservation depends
on the technique used to average the flow properties at
the interface.

Averaging Techniques
The characteristic boundary conditions described

above require average flow properties at the boundaries.
In general, any two independent thermodynamic proper-
ties and any three independent kinematic properties may
be integrated to define some average fluid state. The
integrated properties may be chosen to represent certain
desirable characteristics of the original flow such as con-
servation of mass, momentum, and energy. Since flow
properties are related nonlinearly, the average properties
may not satisfy other characteristics of the original sys-
tem; that is, information is lost through the averaging
process. It thus becomes necessary to decide what infor-
mation must be retained, and to devise averaging
schemes accordingly.

Many averaging techniques have been proposed for
use with averaging-plane methods [3 − 9], and reference
[1] contains information on averaging techniques in
general. Two averaging techniques were used in the cur-
rent work, a mixed-out average and a kinetic energy
average.

Mixed-Out Average
Saxer and Giles used a stream-thrust flux-average

(also known as a mixed-out average) to conserve mass,
momentum, and energy [9]. A similar averaging tech-
nique was used by Denton in [3]. The mixed-out average
can be derived formally by integrating the two-dimen-
sional Euler equations in the y-direction. If the flow is
periodic in y, the integral of the y-direction fluxes is
zero. The resulting equation shows that the average x-
direction flux terms are constant with x, i.e., the average
properties represent the mixed-out flow far downstream.

When a mixed-out average is used at an exit bound-
ary at which the static pressure has been specified, the

average pressure will be less than or equal to the speci-
fied pressure. The difference corresponds to the pressure
drop required to overcome mixing losses that would
occur downstream. The average total pressure includes
those mixing losses. Thus, when a mixed-out average is
used with an averaging-plane analysis, mixing losses
may be introduced prematurely ahead of a blade row.

A mixed-out average can be applied in a general-
ized cylindrical coordinate system by equating the inte-
grated fluxes to fluxes constructed from the average
properties. If the η-coordinate is assumed to coincide
with the θ-direction, then

(7)

where the cylindrical metrics and velocity components
can be found from the Cartesian components (used in
the SWIFT code) using:

(8)

Equation (7) gives a quadratic equation for . The
solution is

(9)

The positive root is used for axially-subsonic flow. The
other average properties follow immediately from

(10)
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Kinetic Energy Average
While the mixed-out average formally represents a

uniform flow far downstream, the kinetic energy average
is meant to represent the local state of the flow. It con-
serves mass and is designed to conserve total enthalpy
by individually conserving static enthalpy and the
square of each of the velocity components. As a result,
the static pressure derived from the kinetic energy aver-
age represents an average local pressure, and the total
pressure ignores mixing losses that may occur down-
stream.

Individual velocity components are mass-averaged
to give the correct signs and relative magnitudes of the

average velocities. An additional mass-average of is
used to rescale average velocity components such that

. The integrated properties are given

by:

(11)

The average properties are given by

(12)

Results

Space Shuttle Main Engine Fuel Turbine
Each engine on the space shuttle uses two tur-

bopumps to pump the fuel and oxidizer from the main
tank to the combustion chamber. The high-pressure fuel
turbopump uses a two-stage axial flow turbine to drive
the pump. The turbine blades are cooled by conduction
to liquid hydrogen fuel circulated in the disk cavity. The
high-pressure fuel turbine (HPFT) was tested experi-
mentally by Hudson, et al. [26] at NASA Marshall
Space Flight Center in a cold-flow test. Surface pres-
sures on the stators and endwalls and overall perfor-
mance parameters were measured in that test. The HPFT
was also tested experimentally by Dunn, et al. [25] at
Calspan in a short-duration shock tube. Blade surface

heat transfer and unsteady pressures were measured in
that test.

Computations have been made of flow through the
HPFT at the operating conditions tested by Dunn, et al.
(referenced by Dunn as run number 12.) The computa-
tions are described below, and comparisons are made
with the pressure measurements of Hudson, et al. and
the heat transfer measurements of Dunn, et al.

Computational Grid
Grids were generated for each blade separately

using the TCGRID turbomachinery grid code, which is
described briefly in [20]. The code generated C-type
blade-to-blade grids at a few spanwise locations using
an elliptic grid generator. The C-grids were then reclus-
tered spanwise using a hyperbolic tangent clustering
function. An H-grid was generated upstream of the first
stator using transfinite interpolation. O-grids were gen-
erated algebraically in the tip clearance region above the
two rotors. Grid generation took about one minute per
blade row on an SGI workstation with an R4000 proces-
sor. Individual grids for each blade were then combined
with utility code such that each grid overlapped its
neighbor by one cell.

A three-dimensional view of the grid is shown in
figure 2. The figure is slightly larger than the actual tur-
bine. The O-grids above the rotor tips can be seen. A
meridional projection of the grid is shown in figure 3.
For clearance during assembly the trailing edge of stator
1 is cut back over roughly one-third of the span. The
cut-back length varies around the wheel, so a nominal
length was used here. There is also a step increase in the
annulus area between the stages. The precise geometry
of the step was unknown, so it was spline-fit arbitrarily
between the known radii. Grid sizes are given in table 1.
The nominal initial grid spacings in turbulent wall units

were on the blades, on the endwalls,

and  on the rotor tips.

Effects of Boundary Conditions
The effects of the characteristic boundary condi-

tions were investigated using two-dimensional calcula-
tions of the mid-span section of the first stator. The grid
was extracted directly from the multiblock grid
described earlier. The exit boundary was located about
0.13 chord lengths downstream axially. Calculations
were made using the quasi-three dimensional analysis
code described in [1].

Three exit boundary conditions were investigated,
and the resulting pressure contours are shown in figure
4. The contour increment is . The solu-

tion on the left used a constant-pressure exit boundary
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Figure 2 − Multiblock grid for the space shuttle main engine fuel turbine

Figure 3 − Meridional view of the computational grid

INLET STATOR 1 ROTOR 1 STATOR 2 ROTOR 2

ROTOR CLEARANCE GAPS

STATOR
CUT-BACK

STEPPED
ANNULUS

Grid # blades imax jmax kmax Total

inlet 17 17 57 16,473
stator 1 41 127 37 57 267,843
rotor 1 63 127 33 57 238,887
rotor 1 tip 95 13 13 16,055
stator 2 39 127 37 57 267,843
rotor 2 59 141 33 57 265,221
rotor 2 tip 101 13 13 17,069

Total 1,089,391

Table 1 — Computational grid sizes for SSME fuel turbine.
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condition, as commonly used in averaging-plane analy-
ses. The pressure field near the exit is distorted in com-
parison to the other solutions in the figure. The solution
in the center used the original characteristic exit bound-
ary condition given by equation (5). The pressure field
near the exit is much smoother than in the figure on the
left, except where the wake (not obvious in the pressure
field) crosses the exit boundary. Here pressure perturba-
tions are produced in proportion to the local velocity
perturbations. The solution on the right used the modi-
fied characteristic exit boundary condition given by
equation (6). The pressure field near the exit is smooth
and the contours cross the boundary cleanly.

The three solutions have identical average static
pressures at the exit. The surface pressure

distribution resulting from the constant-pressure bound-
ary condition is slightly different than the other two
solutions on the uncovered part of the suction surface,
but the differences are small in this low-speed flow. In
transonic cases the differences can be dramatic, as
shown by Saxer and Giles [9]. The three solutions had
virtually identical convergence behaviors even though
the characteristic boundary conditions were designed to
transmit outgoing waves and thereby enhance conver-
gence to a steady state.

Multistage Turbine Results
The multistage turbine was analyzed using the

SWIFT code. Boundary conditions were specified to
simulate the low-Reynolds number test recorded as run
number 12 in reference [25]. At the inlet boundary the
total temperature was set to a constant and a total pres-

sure profile was set to produce turbulent boundary layers
that were eight percent span thick at the hub and tip. The
upstream-running Riemann-invariant was extrapolated
from the interior to the inlet, and the primitive variables
were calculated as described in [20]. At the exit, the hub
static pressure ratio was set to 0.65 to match experimen-
tal measurements given in [26], simple radial equilib-
rium was solved for the mean pressure distribution, and
equation (5) was used to calculate the circumferential
pressure variation. With this exit pressure distribution
the computed flow rate was 2.644 kg/sec (5.83 lb/sec),
which was in perfect agreement with the flow rate mea-
sured experimentally. At the walls, no-slip boundary
conditions were used and the normal pressure gradient
was set to zero. The wall/gas temperature ratio was set
to 0.7 to approximate the nominal experimental condi-
tions. The characteristic boundary conditions described
above were used at the averaging planes.

The calculations were run on the Cray C90 com-
puter at NASA Ames Research Center. They were run
2500 iterations, with a minor change in parameters after
1000 iterations. The convergence history is shown in
figure 5. The calculations required about 25 million
words of storage and six hours of CPU time. An initial
solution was made using the kinetic energy average at
the averaging planes. A second solution was run by
restarting from the kinetic energy average solution and
running 300 iterations using the mixed-out average.

Figure 6 shows the percent error in mass flow
at each computational boundary

through the machine. Note that two values are shown at

CONSTANT 
PRESSURE
EXIT CONDITION

ORIGINAL 
CHARACTERISTIC
EXIT CONDITION

MODIFIED
CHARACTERISTIC
EXIT CONDITION

Figure 4 − Comparison of pressure contours for stator 1 computed with three exit boundary conditions

p p0⁄ 0.86=

100 ṁ ṁin⁄ 1–( )×



9
American Institute of Aeronautics and Astronautics

each averaging plane, one corresponding to the
upstream exit value, and one corresponding to the down-
stream inlet value. No data is shown within the blade
row − the lines serve only to connect related points. The
dashed line shows the solution using the kinetic energy
average. The overall error is less than one percent, but
there is a significant jump at each averaging plane.
Although the averaging scheme conserves mass, the
characteristic boundary conditions allow the solution to
vary around the specified averages and the result is not
perfectly conservative. The fact that the mass flow
increases at each averaging plane appears to be coinci-
dental since other cases have shown decreases at the
averaging planes. The solid line shows the solution
using the mixed-out average. Here the overall error is
less than 0.1 percent and there are practically no errors
at the averaging planes. Although the mixed-out average
gave better mass conservation than the kinetic energy
average, no other obvious differences between the two
solutions were found. Other cases at higher speeds or
closer spacings may show bigger differences between
the schemes. In the remainder of this section only results
using the original kinetic energy average are shown.

Figure 7 shows contours of absolute Mach number
through the turbine at midspan. The absolute reference
frame gives an unusual contour pattern in the rotors, but
serves to show continuity at the averaging planes
between the blade rows. Since the characteristic bound-
ary conditions allow circumferential variations in the
flow around some mean, Mach contours can be seen
crossing the inlet and exit boundaries in several loca-
tions while the average Mach numbers are continuous

across the interface. The contours also show the
extremely thin blade boundary layers and wakes.

Spanwise distributions of circumferentially-aver-

aged total pressure ratio are shown in figure 8.

The inlet profile shows the thin endwall boundary layers
that were specified. The first stator generates about one
percent loss in total pressure. The first rotor extracts
work from the flow and drops the pressure ratio to about
0.815, except near the tip where the clearance gap
decreases the efficiency, leaving the pressure ratio
slightly higher. The second stage performs like the first,
giving an overall pressure ratio of about 0.67.

Figure 9 compares computed and measured static
pressures at various locations through the turbine. Com-
puted stator surface pressures at midspan are compared
to measured pressures from [26] (small circles). The
computations agree very well with the data, except for
small discrepancies on the uncovered portion of the suc-
tion surfaces. Computed pressures between the blade
rows are shown along arbitrary grid lines at midspan.
Since the characteristic boundary conditions allow cir-
cumferentially nonuniform pressure, the average
(squares) and range (plus symbols) are shown at the
interfaces. Endwall pressure measurements that have
been averaged between the hub and tip are shown by
large circles. Note that the measured exit static pressure
ratio of 0.65 was set as the exit boundary condition for
the computations. The agreement between the computed
and measured average pressures between the blade rows
is very good.

Figures 10 − 12 show comparisons between com-
puted and measured surface Stanton numbers at mid-

Figure 6 − Error in calculated mass flow at com-
putational boundaries

Figure 5 − Residual history for SSME turbine cal-
culation
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Figure 8 − Computed spanwise distributions of total pressure in the SSME turbine

Figure 9 − Comparison of computed and measured static pressures in the SSME turbine

Figure 7 − Computed Mach number contours at mid span in the SSME turbine
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span plotted against unwrapped surface distance. The
pressure surface is denoted by negative distance. The
Stanton number is defined by:

(13)

where k is the gas conductivity, is the normal

temperature gradient at the wall, is the mass flow

per unit area, is the specific heat at constant pres-

sure, T0 is the inlet total temperature, and is

the wall temperature.

Figure 10 shows Stanton numbers on stator 1. The
calculations match the high measured Stanton numbers
near the stagnation point, but miss low values between

percent chord. The low Stanton numbers in
this region probably indicate laminar or transitional
boundary layers due to the low Reynolds number of this
particular test [2]. The computations were run assuming
fully-turbulent flow, which accounts for the discrepan-
cies in heat transfer. Downstream of the transition
region the computations are in better agreement with the
data.

Subsequent blade rows experience unsteady pertur-
bations from upstream wakes, which should shorten the
transitional region. Figure 11 shows Stanton numbers on
rotor 1. The measurements show very high heat transfer
at the leading edge which is almost predicted by the
computations. On the suction surface the measurements
show perhaps a small transitional region followed by
fully-turbulent flow. The computations miss the transi-
tional region but show excellent agreement in the turbu-
lent region. Although the pressure surface was probably
fully turbulent, the computed heat transfer is somewhat
low.

Figure 12 shows Stanton numbers on stator 2. No
transitional regions are evident in the data. The com-
puted Stanton numbers show excellent agreement on the
pressure surface but are somewhat high on the suction
surface. No experimental data was taken on rotor 2.

Overall it is felt that the computed Stanton numbers
agree very well with the measurements. The results
point out the need for reasonable transition models for
multistage machines. With algebraic turbulence models
it may be sufficient to model transition on the first blade
row and leave subsequent rows fully turbulent. With
multi-equation models the increased turbulent kinetic
energy downstream of the first blade row may trigger
early transition in later blade rows.

Concluding Remarks
A three-dimensional multiblock analysis code for

turbomachinery was modified to allow analysis of multi-
stage turbomachines. The SWIFT code was described
briefly. The code can combine a limited selection of grid
block types to simulate a wide range of turbomachinery
problems. It uses an explicit finite-difference scheme to
solve the thin-layer Navier-Stokes equations with the
Baldwin-Lomax or Cebeci-Smith turbulence models. A
spatially-varying time step, implicit residual smoothing,
and preconditioning can be used to accelerate the con-
vergence to a steady solution.

A steady averaging-plane method was used for mul-
tistage problems. Characteristic boundary conditions
written in terms of linear perturbations about the aver-
age flow from the neighboring blade row were used to
exchange information between the blade rows. The
characteristic boundary conditions and the averaging-
plane implementation were described in detail. Two
approaches for averaging the flow properties were also
described.

A two-stage fuel turbine used on the space shuttle
main engines was analyzed. Computed results were
compared with experimental data from two independent
tests. Surface pressure distributions on the stators and
endwalls agreed very well with the experimental data
except for slight discrepancies on the uncovered portion
of the stator suction surfaces. Blade-surface distribu-
tions of heat transfer coefficient on the first three blade
rows all compared very well with experimental data
except in regions where transition was likely to be most
important. Spanwise distributions of total pressure were
shown but no data were available for comparison. Thus
the ability of the method to predict overall performance
of multistage turbomachines remains to be demon-
strated.

Several conclusions regarding the characteristic
boundary conditions and the averaging-plane method
were reached:

1 The use of characteristic boundary conditions
ensures that information propagates correctly
between blade rows. Although the boundary condi-
tions are nonreflecting, they did not change the con-
vergence behavior of the code.

2 The linear formulation of the boundary conditions is
easy to implement and behaves well numerically.

3 The use of perturbations about the average flow
allows close spacing between the blade rows without
forcing the flow to be axisymmetric. This property
overcomes a main limitation of other averaging-
plane codes.
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Figure 10 − Comparison of computed and measured Stanton numbers on stator 1

Figure 11 − Comparison of computed and measured Stanton numbers on rotor 1

Figure 12 − Comparison of computed and measured Stanton numbers on stator 2
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4 The original boundary conditions exhibited small
pressure perturbations where viscous wakes crossed
the exit boundary. A modification to the linearization
reduced this problem at exit boundaries, but the
modification has not as yet been applied at averaging
planes.

5 The well-known mixed-out average that represents
the flow far downstream, and a new kinetic energy
average that represents the local flow were used with
the averaging-plane method. The mixed-out average
had better conservation properties than the kinetic
energy average, but no other significant differences
were seen between the solutions in the low-speed
case considered here. Larger differences may be
expected at higher speeds or with closer blade spac-
ings.

6 The addition of averaging-plane capability allows
the SWIFT code to be used to analyze multistage
turbomachinery efficiently. The method gives con-
sistent spanwise solutions between blade rows that
are difficult to obtain with successive analysis of iso-
lated blade rows.

7 The averaging-plane method ignores physical pro-
cesses such as wake mixing and migration, acoustic
interaction, and other unsteady effects that may be
important in real turbomachinery. The relative
importance of these processes is unknown, and is
likely to be highly case dependent.
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